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Abstract

A numerical simulation is performed to study the flow structures and heat transfer characteristics of a heated

transversely oscillating cylinder in a cross flow. The variations of flow and thermal fields are classified into a class of

moving boundary problems. The moving interfaces between the fluid and cylinder have been considered. An arbitrary

Lagrangian–Eulerian kinematic description method is adopted to describe the flow and thermal fields. A penalty

consistent finite element formulation is applied to solve the governing equations. The subsequent developments of the

vortex shedding and heat transfer characteristics around the heated cylinder are presented in detail. The effects of

Reynolds number, oscillating amplitude, oscillating speed on the flow structures and heat transfer characteristics are

examined. The results show that the interaction between the oscillating cylinder and vortex shedding from the cylinder

dominates the state of the wake. The flow and thermal fields may approach a periodic state in lock-in regime. The heat

transfer of the cylinder in the lock-in regime is enhanced remarkably. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

A phenomenon of vortex shedding induced by a flow

passing through a cylinder is important in engineering

applications such as heat exchangers, nuclear reactor

fuel rod, and steel cable of suspension bridge. Doubtless,

the heat transfer mechanism of the cylinder in the flow

of vortex shedding is also interesting and important in

many engineer applications.

For a flow passing through a stationary cylinder, ex-

perimental observation and numerical predictions had

shown that the alternating vortex sheet in the wake of a

cylinder induced lift and drag forces on the cylinder and

flow to be unsteady. The unsteady flow of vortex shed-

ding from the cylinder also caused the heat transfer on the

circular cylinder to be unsteady, and the maximum local

heat transfer rate was found near the front stagnation

point [1–6]. Besides, Varaprasad Patnail et al. [7] adopted

Galerkin weighted residual formulation to simulate a

flow passing over an isolated cylinder. The effects of

aiding and opposing buoyancy forces on the flow and

thermal fields had been studied, and the mechanisms of

vortex shedding were investigated in detail.

As for a flow passing an oscillating cylinder, there

were many numerical and experimental studies [8–12] to

investigate this subject. The phenomena indicated that

the significant vibration happened in the vortex flow

structure and the average drag force increased in the

lock-in frequency. However, the studies of dealing with

heat transfer problems of this subject are relatively

scarce. Sreenivasan and Ramachandran [13] studied the

effect of vibration on heat transfer of a horizontal cyl-

inder normal to air stream by an experimental method

and no appreciable change in the heat transfer coeffi-

cient was observed with the maximum velocity ampli-

tude of 0.2. Saxena and Laird [14] considered a cylinder

transversely oscillating in an open water channel for a

flow at Re ¼ 3500 and observed the increment of heat

transfer to be about 60%. Leung et al. [15], Cheng et al.
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[16], and Gau et al. [17] experimentally investigated heat

transfer around a heated oscillating circular cylinder.

The results found that the enhancement of heat transfer

was proportional to the magnitude of oscillating fre-

quency and amplitude of the circular cylinder. Due to

the difficulty of numerical computation, there were a

few papers to study the above problem numerically.

Karanth et al. [18] studied the flow over a transversely

oscillating cylinder in infinite domain at Re ¼ 200

numerically. In order to simplify the computation, the

non-inertial reference frame adopted for computing this

subject and the result showed that the heat transfer rate

of the oscillating cylinder increased with the increasing

of velocity. Cheng et al. [19] adopted the same numerical

method to study the effect of transverse oscillation on

the flow patterns and heat transfer from a cylinder. The

results indicated that the heat transfer increased re-

markably as the flow approached the lock-in regime, in

which the cylinder oscillating frequency is near the

natural vortex shedding frequency; however, outside the

lock-in regime the heat transfer was almost unaffected

by the oscillation of the cylinder. Most studies men-

tioned above focused on free surface boundary. The

study of flow of vortex shedding and heat transfer of

circular cylinder in a channel is seldom investigated.

The subject of the present work is therefore to in-

vestigate the variations of flow and thermal fields of the

flow passing over a heated transversely oscillating cyl-

inder in a channel. Due to the interaction between the

flow and oscillating cylinder, the variations of the flow

and thermal fields become time-dependent and belong to

a class of the moving boundary problem. In the past, a

structure oscillating or moving in a flowing fluid was

conveniently regarded as a stationary one in the flow or

Nomenclature

d diameter of the cylinder (m)

fc oscillating frequency of the cylinder ðs�1Þ
Fc dimensionless oscillating frequency of the

cylinder ðFc ¼ fd=ucÞ
h dimensional height of the channel (m)

h1 distance from the wall of the channel to the

center of the cylinder (m)

lc oscillating amplitude of the cylinder (m)

Lc dimensionless oscillating amplitude of the

cylinder ðLc ¼ lc=dÞ
Nu average Nusselt number around the cylinder

Nu time-averaged Nusselt number

Nuh local Nusselt number

p dimensional pressure ðN m�2Þ
p1 reference pressure ðN m�2Þ
P dimensionless pressure ðP ¼ ðp � p1Þ=qu20Þ
Pr Prandtl number ðPr ¼ t=aÞ
r radius of the cylinder (m)

R dimensionless radius ðR ¼ r=dÞ
Re Reynolds number ðRe ¼ u0d=tÞ
t dimensional time (s)

T dimensional temperature (K)

Tc dimensional temperature of the cylinder (K)

T0 dimensional temperature of the inlet fluid (K)

u; v dimensional velocities in x and y directions

ðm s�1Þ
U ; V dimensionless velocities in X and Y direc-

tions ðU ¼ u=u0; V ¼ v=u0Þ
u0 dimensional velocities of the inlet fluid

ðm s�1Þ
vc dimensional oscillating velocity of the cyl-

inder ðm s�1Þ
Vc dimensionless oscillating velocity of the

cylinder ðVc ¼ vc=u0Þ

vm dimensional maximum oscillating velocity

of the cylinder ðm s�1Þ
Vm dimensionless maximum oscillating velocity

of the cylinder ðVm ¼ vm=u0Þ
v̂v dimensional mesh velocity in y-direction

ðm s�1Þ
V̂V dimensionless mesh velocity in Y-direction

ðV̂V ¼ v̂v=u0Þ
w dimensional length of the channel

w1 dimensional distance from the inlet of the

channel to the cylinder

w2 dimensional distance from the outlet of the

channel to the cylinder

x; y dimensional Cartesian coordinates (m)

X ; Y dimensionless Cartesian coordinates ðX ¼
x=d; Y ¼ y=dÞ

Greek symbols

a thermal diffusivity ðm2 s�1Þ
U computational variables

k penalty parameter

m kinematic viscosity ðm2 s�1Þ
p ratio of the circumference of a circle to its

diameter

h dimensionless temperature ðh ¼ ðT � T0Þ=
ðTc � T0ÞÞ

q density ðkg m�3Þ
s dimensionless time ðs ¼ tu0=dÞ
sp dimensionless time of one oscillating cycle

W dimensionless stream function

Others

jj absolute value
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a non-inertial reference frame moving with the structure

for analyzing the above problem. Those methods are

used to solve the problem of free surface boundary;

nevertheless, those seldom solve the problem with the

fixed boundary. However, due to the continuity of flow,

the fluid near the structure will simultaneously replenish

the blank space induced by the movement of the struc-

ture. For simulating the problem more realistically, the

interfaces between the fluid and cylinder under moving

situation have been taken into consideration, and this

problem is then hardly analyzed by either the Lagran-

gian or the Eulerian kinematic description methods

solely. An arbitrary Lagrangian–Eulerian (ALE) kine-

matic description method [20], which combines the

characteristics of the Lagrangian and Eulerian kinematic

description method, is an appropriate kinematic de-

scription method to describe this problem. In the ALE

method, the computational meshes may move with the

fluid (Lagrangian), be held fixed (Eulerian), or be moved

in prescribed way. The detail of the kinematic theory of

the ALE method is delineated in Hughes et al. [21],

Donea et al. [22], and Ramaswamy [23].

Consequently, the ALE method is adopted to inves-

tigate numerically the variations of the flow and thermal

fields induced by the transversely heated oscillating

cylinder in a cross flow. Thus, it could simulate this

problem more realistically in this study. A consistent

penalty finite element method is applied to solve the

governing equations. The subsequent development of

the vortex shedding and the heat transfer characteristics

around the heated cylinder are presented in detail. The

effects of Reynolds number, oscillating speed, and os-

cillating frequency of the cylinder on the flow structures

and heat transfer characteristics are investigated.

2. Physical model

The physical model used in this study is shown in

Fig. 1. A two-dimensional channel with height h and

length w is used to simulate this problem. An isothermal

cylinder of diameter d with constant temperature Tc is set
within the channel. The distances from the inlet and

outlet of the channel to the cylinder are w1 and w2, re-

spectively. The inlet velocity u0 and temperature T0 of the
fluid are uniform. Initially, the cylinder is stationary at

the position of the center of the channel and the fluid

flows steadily. The distance from the wall of the channel

to the center of the cylinder is h1. As the time t > 0, the

cylinder is in oscillating motion normal to the inlet flow

with velocity vc ¼ vm cosð2pfctÞ. The blockage ratio

ðd=hÞ is 0.1. The behavior of the oscillating cylinder and

the flow then affects mutually, and the variations of the

flow field become time-dependent and are classified into

a class of moving boundary problems. As a result, the

ALEmethod is properly utilized to analyze this problem.

For facilitating the analysis, the following assump-

tions are made.

(1) The fluid is air and the flow field is two-dimensional,

incompressible and laminar.

(2) The fluid properties are constant and the effect of the

gravity is neglected.

(3) The no-slip condition is held on the interfaces be-

tween the fluid and cylinder.

Based upon the characteristics scales of d, u0, qu20
and T0, the dimensionless variables are defined as follows:

X ¼ x
d
; Y ¼ y

d
; U ¼ u

u0
; V ¼ v

u0
; V̂V ¼ v̂v

u0
;

Vc ¼
vc
u0

; Vm ¼ vm
u0

; Fc ¼
fcd
u0

; P ¼ p � p1
qu20

;

s ¼ tu0
d

; h ¼ T � T0
Tc � T0

; Re ¼ u0d
t

; Pr ¼ t
a
; ð1Þ

where v̂v is the mesh velocity, vc, fc and vm are the

oscillating velocity, the oscillating frequency of the

cylinder, and the maximum oscillating velocity of

the cylinder, respectively.

According to the above assumptions and dimen-

sionless variables, the dimensionless ALE governing

equations [22–25] are expressed as the following equa-

tions:

Continuity equation

oU
oX

þ oV
oY

¼ 0: ð2Þ

Momentum equation

oU
os

þ U
oU
oX

þ V
�

� V̂V
� oU
oY

¼ � oP
oX

þ 1

Re
o2U
oX 2

�
þ o2U

oY 2

�
; ð3Þ

oV
os

þ U
oV
oX

þ V
�

� V̂V
� oV
oY

¼ � oP
oY

þ 1

Re
o2V
oX 2

�
þ o2V

oY 2

�
: ð4Þ

Fig. 1. Physical model.
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Energy equation

oh
os

þ U
oh
oX

þ V
�

� V̂V
� oh
oY

¼ 1

RePr
o2h
oX 2

�
þ o2h
oY 2

�
: ð5Þ

As the time s > 0, the boundary conditions are as

follows:

On the inlet surface AB

U ¼ 1; V ¼ 0; h ¼ 0: ð6Þ

On the wall BC and AD

U ¼ 0; V ¼ 0;
oh
oY

¼ 0: ð7Þ

On the outlet surface CD

oU
oX

¼ 0;
oV
oX

¼ 0;
oh
oX

¼ 0: ð8Þ

On the interfaces between the fluid and cylinder

U ¼ 0; V ¼ Vc; h ¼ 1: ð9Þ

3. Numerical method

The governing equations and boundary conditions

are solved through the Galerkin finite element formu-

lation and a backward scheme is adopted to deal with

the time terms of the governing equations. The pressure

is eliminated from the governing equations using the

consistent penalty method [26]. The velocity and tem-

perature terms are expressed as quadrilateral element

and eight-node quadratic Lagrangian interpolation

function. The Newton–Raphson iteration algorithm is

utilized to simplify the non-linear terms in the momen-

tum equations. The discretion processes of the governing

equations are similar to the one used in Fu et al. [27].

Then, the momentum equations (3) and (4) can be ex-

pressed as the following matrix form:

Xne
1

½A	ðeÞ
�

þ K½ 	ðeÞ þ k L½ 	ðeÞ
�

qf gðeÞsþDs ¼
Xne
1

ff gðeÞ; ð10Þ

where

fqgðeÞsþDs

� �T

¼ U1;U2; . . . ;U8; V1; V2; . . . ; V8h imþ1
sþDs; ð11Þ

½A	ðeÞ includes the ðmÞth iteration values of U and V at

time s þ Ds; ½K	ðeÞ includes the shape function, V̂V , and
time differential terms; ½L	ðeÞ includes the plenty function;
½f 	ðeÞ includes the known values of U and V at time s and
ðmÞth iteration values of U and V at time s þ Ds.

The energy equation (5) can be expressed as the fol-

lowing matrix form:

Xne
1

½M 	ðeÞ
�

þ ½Z	ðeÞ
�
fcgðeÞsþDs ¼

Xne
1

frgðeÞ; ð12Þ

where

fcgðeÞsþDs

� �T

¼ h1; h2; . . . ; h8h isþDs; ð13Þ

½M 	ðeÞ includes the values of U and V at time s þ Ds;
½Z	ðeÞ includes the shape function, V̂V , and time differential

terms; ½r	ðeÞ includes the known values of h at time s.
In Eqs. (10) and (12), Gaussian quadrature procedure

are conveniently used to execute the numerical integra-

tion. The terms with the penalty parameter k are inte-

grated by 2� 2 Gaussian quadrature, and the other

terms are integrated by 3� 3 Gaussian quadrature. The

value of penalty parameter k used in this study is 106.

The frontal method solver is applied to solve Eqs.

(10) and (12). The mesh velocity V̂V is linearly distrib-

uted and inversely proportional to the distance be-

tween the nodes of the computational elements and

cylinder.

A brief outline of the solution procedures are de-

scribed as follows:

(1) Determine the optimal mesh distribution and num-

ber of the elements and nodes.

(2) Solve the values of the U ; V and h at the steady state

and regard them as the initial values.

(3) Determine the time step Ds and the mesh velocity V̂V
of the computational meshes.

(4) Update the coordinates of the nodes and examine

the determinant of the Jacobian transformation ma-

trix to ensure the one to one mapping to be satisfied

during the Gaussian quadrature numerical integra-

tion.

(5) Solve Eq. (10), until the following criteria for con-

vergence are satisfied:

Umþ1 � Um

Umþ1

����
����
sþDs

< 10�3; ð14Þ

where U ¼ U and V ;

and substitute the U and V into Eq. (12) to obtain h.
(6) Continue the next time step calculation until peri-

odic solutions are attained.

4. Results and discussion

The working fluid is air with Pr ¼ 0:71. The main

parameters of Reynolds number Re, maximum oscillat-

ing velocity Vm, and oscillating frequency Fc are exam-

ined and the combinations of these parameters are

tabulated in Table 1.

The local Nusselt number is calculated by the fol-

lowing equation

Nuh ¼ � oh
oR

����
R¼1=2

: ð15Þ
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The average Nusselt number around the cylinder is ex-

pressed as follows.

Nu ¼ 1

2p

Z 2p

0

Nuh dh: ð16Þ

The time-averaged Nusselt number per cycle is defined

by

Nu ¼ � 1

sp

Z sp

0

Nuds: ð17Þ

For matching the boundary conditions at the inlet and

outlet of the channel mentioned above, the lengths from

the inlet and outlet to the cylinder are determined by

numerical tests and equal to 10.0 and 30.0, respectively.

To obtain an optimal computational mesh, three dif-

ferent non-uniform distributed elements, which provide

a finer element resolution near the cylinder and walls,

are used for the mesh tests. Fig. 2 shows the velocity and

temperature profiles along the line through the center of

the cylinder and parallel the Y -axis at the steady state

under Re ¼ 500. Based upon the results, the computa-

tional mesh with 4524 elements, which is corresponding

to 13 960 nodes, is used for all cases in this study.

Table 1

Computed parameter combinations

Re Vm Fc Lc

Case 1 200 0.5 0.1 0.8

Case 2 200 0.5 0.2 0.4

Case 3 200 0.5 0.4 0.2

Case 4 200 0.25 0.2 0.2

Case 5 200 1 0.2 0.8

Case 6 100 1 0.2 0.8

Case 7 500 1 0.2 0.8

Fig. 2. Comparison of the velocity and temperature profiles along the line through the center of the cylinder and parallel the Y -axis for
different mesh.
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In addition, an implicit scheme is employed to deal

with the time differential terms of the governing equa-

tions. Three different time steps Ds ¼ 0:05, 0.01, and

0.005 at Re ¼ 500, Vm ¼ 1, and Fc ¼ 0:5, are executed for

the time step tests. The variations of the average Nusselt

number around the cylinder Nu with time are shown in

Fig. 3, and the time step Ds ¼ 0:01 is chosen for all cases

in this study.

The dimensionless stream function W is defined as

U ¼ oW
oY

; V ¼ � oW
oX

: ð18Þ

For clearly indicating the variations of the flow and

thermal fields, the streamlines and isothermal lines in the

vicinity of the cylinder are presented only. Besides, the

sign ‘‘arrow’’ in the subsequent figures is to indicate the

moving direction of the cylinder.

Fig. 4(a) shows the comparison of the distributions of

local Nusselt number on a stationary cylinder of the

present study with existing studies [2,5,7]. The maximum

local heat transfer rate is found at the upstream stag-

nation point. The consistence between the present study

and other studies is available. Fig. 4(b), the average

Nusselt numbers of the present study at steady state for

different Reynolds numbers are compared with the

previous studies [1,16]. The deviation among the results

is small.

Fig. 5 shows the transient developments of the

streamlines for case 2. At the time s ¼ 0, the cylinder is

stationary and the flow is steady. The formation of large

recirculation zones is observed behind the cylinder, as

shown in Fig. 5(a). As time s > 0, the cylinder starts to

oscillate with the oscillating velocity Vc ¼ Vm cosð2pFcsÞ
and oscillating frequency Fc ¼ 0:2 . As shown in Fig.

5(b), the cylinder moves upward. The fluid near the top

region of the cylinder is pressed by the surface of cyl-

inder. Conversely, the fluid near the bottom region of

the cylinder simultaneously replenishes the vacant space

induced by the movement of the cylinder due to the

continuity of the flow. The cylinder turns downward as

it reaches the maximum upper amplitude. As shown in

Fig. 5(c), the cylinder is on the way to move downward.

Since the moving direction of the cylinder is changed,

the fluid near the top region of the cylinder replenishes

the vacant space similar to the phenomenon mentioned

above, and causes a new recirculation zone to form

around the rear of the cylinder. Afterward, the fluid near

the bottom region of the cylinder is continuously pressed

by the cylinder. As a result, the recirculation zone

around the rear of the cylinder is shed from the cylinder,

and the vortex shedding begins to happen, as shown in

Fig. 3. Comparison of the variations of the average Nusselt

numbers around the cylinder for different time steps Ds.

(a) (b)

Fig. 4. Comparison of Nusselt numbers with existing studies: (a) local Nusselt number; (b) average Nusselt numbers.
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Fig. 5(d). As the cylinder reaches the maximum down-

ward amplitude, the cylinder returns upward immedi-

ately shown in Figs. 5(e)–(g). The new recirculation zone

is formed around the rear of the cylinder and shed from

the cylinder. Due to the vortex shedding and the oscil-

lating motion of the cylinder, the large recirculation

zones behind the cylinder are difficult to maintain

their original situations, which causes the large recircu-

lation zones to be split into small vortices and to flow

to the downstream. As the time increases, since the

cylinder is in oscillating motion, the formation of the

recirculation zones around the rear region of the cylin-

der becomes periodic. Besides, due to the drastic swing

of the cylinder, the vortices are scattered in the flow

gradually. Finally, the flow becomes wavy motion, as

shown in Figs. 5(h)–(j). The behaviors of the oscillating

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 5. The transient developments of streamlines for case 2: (a) s ¼ 0; (b) s ¼ 1; (c) s ¼ 2; (d) s ¼ 3; (e) s ¼ 4; (f) s ¼ 5; (g) s ¼ 6; (h)

s ¼ 7:5; (i) s ¼ 10; (j) s ¼ 12:5.
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cylinder and shedding vortex dominate the state of the

wake.

Figs. 6(a)–(e) show the variations of the streamlines

and isothermal lines for case 2 during one periodic cycle.

The streamlines and isothermal lines at the time s ¼ 55

(Fig. 6(a)) are identical with those at the time s ¼ 60

(Fig. 6(e)), which means that the variations of the flow

and thermal fields become a periodic motion with time.

(a)

(b)

(c)

(d)

(e)

Fig. 6. The variations of the streamlines and isothermal lines during one periodic cycle under Re ¼ 200, Vm ¼ 0:5, and Fc ¼ 0:2 situation.
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The distributions of local Nusselt number on the

stationary cylinder and oscillating cylinder in one peri-

odic cycle are shown in Fig. 7. The maximum heat

transfer coefficient approximately occurs at the front

stagnation point, and the minimum heat transfer coef-

ficient occurs at the near separation point position. At

the stage of quarter cycle (sp=4), the cylinder stops at the
highest amplitude, as shown in Fig. 6(b). Since the flow

behind the cylinder becomes wavy motion, the distur-

bance of flow field behind the cylinder is increased. As a

result, comparing with the stationary cylinder, the heat

transfer rate on the rear region (p=2 < h < 3p=2) of the
oscillating cylinder is enhanced obviously. Since the fluid

is pressed by the upward cylinder, the heat transfer rate

on the top region of the cylinder (h < p=2) increases

slightly relating to that of the stationary cylinder. At the

stage of half cycle (2sp=4), the cylinder moves downward

with the maximum oscillation velocity, as shown in Fig.

6(c). The fluid skims over the downward cylinder, the

heat transfer rate of the upper region (h < p=2) of the
cylinder is then smaller than that of the stationary cyl-

inder, and the position of the minimum heat transfer

rate on the top surface of the cylinder moves forward

slightly. The fluid near the lower region (p=2 < h < p) is
pressed by the cylinder, therefore the heat transfer rate

in this region is apparently larger than that of the sta-

tionary cylinder, and the position of minimum heat

transfer on the bottom surface of the cylinder moves

backward. Afterward, at the stage of three-fourths pe-

riodicity (3sp=4), the cylinder stops at the lowest posi-

tion, as shown in Fig. 6(d). Similar to the phenomena of

the stage of quarter cycle (sp=4), the heat transfer rate on
the rear region of the oscillating cylinder is enhanced

obviously. Oppositely, because of the different moving

directions of the cylinder at the stages of sp=4 and 3sp=4,
the heat transfer rate on the bottom surface of the cyl-

inder (h > 3p=2) increases slightly similar to that of the

stationary cylinder, but the heat transfer rate on the top

surface (h < p=2) is close to that of the stationary cyl-

inder. Finally, the cylinder turns upward to finish one

periodicity (4sp=4), as shown Fig. 6(e). The cylinder

moves upward with the maximum velocity, opposite to

the phenomena of downward movement of the cylinder,

the heat transfer rate on the upper region (0 < h < p) of
the cylinder increases substantially, but the heat transfer

rate on the lower region (3p=2 < h < 2p) of the oscil-

lating cylinder is slightly lower than that of the sta-

tionary cylinder.

When the oscillating frequency approaches the nat-

ural shedding frequency, it would cause the lock-in

phenomenon to happen [8–12]. For a flow passing

through a stationary cylinder, the natural frequency of

vortex shedding is about 0.2 over a range of Reynolds

number from 2� 102 to 104. Fig. 8 shows the variations

of average Nusselt number Nu of the cylinder with time

for different oscillating frequencies under Re ¼ 200 and

Vm ¼ 0:5 , situation. Comparing with the stationary

cylinder, the heat transfer rates of the oscillating cylinder

are increased about 10%, 13%, and 8% relating to the

stationary one for oscillating frequencies of Fc ¼ 0:1
(case 1), Fc ¼ 0:2 (case 2), and Fc ¼ 0:4 (case 3), re-

spectively. It can be observed that as the oscillating

frequency is in the lock-in regime (Fc ¼ 0:2), the

heat transfer rate is enhanced apparently, and the flow

Fig. 7. The distributions of local Nusselt number on the os-

cillating cylinder for case 2.

Fig. 8. The variations of average Nusselt number around the

cylinder with time for different oscillating frequencies under

Re ¼ 200 and Vm ¼ 0:5 situation.
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and the thermal fields approach a periodic state with

time. Conversely, when the values of Fc are equal to 0.1

and 0.4, the flows become the unlock-in flow, the en-

hancement for the heat transfer rate of these flows are

not as significant as that in the lock-in regime, and

the variations of the flow and thermal fields are irregu-

lar in those frequencies. The phenomenon is consistent

with the literature [16–19] for a cylinder oscillating in

a flow.

The effects of the oscillating speed on the heat

transfer are shown in Fig. 9 for the Re ¼ 200 and

Fc ¼ 0:2. Comparing with the stationary cylinder, the

heat transfer rates around the oscillating cylinder are

increased about 10.2%, 13.3%, and 21.9% for the max-

imum oscillating velocity Vm ¼ 0:25 (case 4), Vm ¼ 0:5
(case 2), Vm ¼ 1:0 (case 5), respectively. As the oscillating

velocity of the cylinder increases, the variations of the

flow become more drastic. Consequently, the heat

transfer rate is enhanced remarkably with the increment

of the oscillating velocity.

The effects of the Reynolds number on the heat

transfer are shown in Fig. 10 for the Vm ¼ 1:0 and

Fc ¼ 0:2. The heat transfer rates around the cylinder

are increased about 17.8%, 21.9%, and 28.7% for the

Reynolds number of 100 (case 6), 200 (case 5), and 500

(case 7), respectively. The heat transfer rate is enhanced

remarkably with the increment of the Reynolds number.

5. Conclusions

The flow structures and the heat transfer character-

istics of a heated transversely oscillating cylinder in a

cross flow are investigated numerically. Some conclu-

sions are summarized as follows:

1. The interaction between the oscillation cylinder and

vortex shedding from the cylinder dominates the state

of the wake. As the flow is in the lock-in regime, the

frequency of the vortice shedding is near the oscillat-

ing frequency of the cylinder, the flow and thermal

fields would approach a periodic state.

2. The heat transfer rate is enhanced remarkably as the

oscillating frequency of the cylinder approaches the

natural shedding frequency.

3. The heat transfer rate is increased apparently when

the oscillating velocity of the cylinder and the Rey-

nolds number are increased.

4. This study solves the moving boundary problem by

ALE method and simulates the flow passing over

a oscillating cylinder in a channel, successfully. Fur-

ther, it could analyze the effect of the oscillating cyl-

inder on the heated block mounted on the channel,

which is interesting and important in many engineer

applications.
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Fig. 9. The variations of average Nusselt number around the

cylinder with time for different oscillating velocities under

Re ¼ 200 and Fc ¼ 0:2 situation.

Fig. 10. The variations of average Nusselt number around the

cylinder with time for various Reynolds numbers under

Fc ¼ 0:2 and Vm ¼ 0:5 situation.
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